
USIGS Common Object Specification

National Imagery and Mapping Agency
United States Imagery and Geospatial System

Release Date: 22 July, 1997
Version 1.0

A-ii

Acknowledgments

Many individuals and organizations provided support and technical contributions to this
work, Individuals from numerous government agencies, contractor organizations and
vendors contributed significantly to the development of this specification. We acknowledge
these contributions and hope that these individuals and organizations will continue to
actively support future updates and extensions. Thanks in advance.

Revision History

• Initial release of UCO Specification. Derived from earlier work on Imagery
Access Services and Geospatial and Imagery Access Services
Version 1.0 - Released for NCCB submittal 22 July 1997

A-iii

Planned Releases

• USIGS Common Object Specification Version 1.1 - Update to incorporate
responses and comments from additional interface prototyping tests - Nov. 1997
(TBR)

• Regular updates at approximately six month intervals or as required to support
additional interface definition efforts.

A-iv

Preface

This document defines common interfaces and datatypes that are expected to used by
many other United States Imagery and Geospatial System (USIGS) interface specifications.
The intent of this specification is to document the interfaces, datatypes and error conditions
that are expected to most commonly occur or be most broadly applicable across the USIGS
architecture. The use of these common definitions will support interoperability among the
various interface specification in the USIGS architecture.

This specification was prepared consistent with industry practices and is modeled after
those being prepared by the Object Management Group (OMG) industry consortium. This
approach is consistent with guidelines and direction established by the NIMA Common
Imagery Interoperability Working Group (CIIWG).

A-v

Table Of Contents

ACKNOWLEDGMENTS... I

REVISION HISTORY.. II

PLANNED RELEASES... III

PREFACE ... IV

1. OVERVIEW... 6

2. UCO ELEMENTS ... 7

2.1 OVERVIEW.. 7
2.2 UCO DATA TYPES ... 7

2.2.1 General data types .. 7
2.2.2 Vector-like data types... 10
2.2.3 Raster-like data types ... 11
2.2.4 State & Status... 13

2.3 UCO INTERFACES ... 14
2.4 UCO EXCEPTIONS... 14

3. APPENDIX A: UCO IDL.. 15

4. APPENDIX B: REFERENCE OMG STANDARD IDL.. 19

CORBA STANDARD EXCEPTIONS.. 19

5. ACRONYMS.. 20

6. POINTS OF CONTACT ... 1

6

1. Overview
The USIGS Common Object Specification (UCOS) is a critical element

to support interoperability in the USIGS architecture. The purpose of the
UCOS is to define in a single place the interfaces, data types and error
conditions that must be shared by multiple specifications in USIGS. By
defining these shared elements in a single place, redundant (possibly non-
interoperable) re-definitions of the same concept in multiple specifications are
prevented. It is necessary for the effective use of this specification, that the
elements defined here be used whenever and where ever appropriate and that
all new shared elements identified by specifications be incorporated in later
versions of this specification.

A-7

2. UCO Elements

2.1 Overview

All UCOS element definitions are enclosed within the UCO module:

module UCO
{

... all UCO elements...

};

2.2 UCO data types

2.2.1 General data types

2.2.1.1 NameList, NameValue & NameValueList

struct NameValue
 {

string name;
any value;

 };

typedef sequence < NameValue > NameValueList;

typedef sequence < string > NameList;

These three data types are used as containers for generic identifiers
(“Names”) as well as the association of identifiers with a value.

The NameValue structure is used to associate an identifier defined as a
type string with a value defined as a type any. The type any is used as a
container to hold a value of any system or user defined type.

The NameValueList is used as an ordered list of NameValue pairs. This
structure does not define any explicit relationship amongst the elements of the
list except their order in the sequence.

The NameList is used as an ordered list of identifiers. This structure does
not define any explicit relationship amongst the elements of the list except
their order in the sequence.

A-8

2.2.1.2 FileLocation & FileSet

struct FileLocation
 {
 string user_name;
 string password;
 string host_name;
 string path_name;
 string file_name;
 };

typedef sequence <FileLocation> FileSet;

These two structures are used to identify individual and collections of
files and file locations in a file system.

The FileLocation structure is used to define an individual file or file
location as well as provide access control information needed to access that
file or location. The system on which the file or location resides is defined by
supplying a host name or IP number, as a string, in host_name . The location
of that file on the specified system is defined by supplying, as a string, an
absolute path to the directory in which the file resides. The syntax for this
string uses the UNIX path specification i.e. “\” is used as a delimiter and all
paths begin with a delimiter indicating the root directory. The identifier for the
specific file is identify by supplying, as a string, the file name in file_name . If
the FileLocation structure is being used to specify a directory, the full path
including the desired directory will be included in path_name and file_name
will be NULL. The information needed to perform access control for the
specified file is in the elements user_name and password .
An identifier for a user authorized to access the requested file or location is
supplied as a string in user_name . The password that corresponds with that
user identifier is supplied as a string in password . The values for these access
control elements for public (“anonymous”) access are implementation
dependent.

The structure FileSet is used to represent a collection of files or file
locations. Each file or location in the collection is a complete FileLocation
structure, (i.e. there are no assumptions about the files or locations or their
access control information with respect to each other). This structure does not
define any explicit relationship amongst the elements of the collection except
their order in the sequence.

2.2.1.3 Date, Time & AbsTime

 struct Date
 {
 unsigned short year;

A-9

 unsigned short month;
 unsigned short day;
 };

 struct Time
 {
 unsigned short hour;
 unsigned short minute;
 float second;
 };

 struct AbsTime
 {
 Date date;
 Time time;
 };

These structures are used to represent points in and periods of time.
The Date structure is used to represent a specific day. The year of that day is
specified as an unsigned short in year . This must be the full specification of
the year, using the last two digits (i.e. “97” for “1997”) is considered non-
compliant. The month of this day is specified as an unsigned short in month
with a value between 1 and 12, where the value 1 represents January and the
value 12 represents December. The specific day is identified as an unsigned
short in day . To represent a general calendar day of the year, (i.e.
Independence Day is 4 July) the year value shall be 0 (zero).

The structure Time can be used to represent both absolute and relative
time. In order to represent absolute time, this structure is used with the Date
structure to establish a point of reference (See the AbsTime structure defined
below). To represent relative time or a length of time, the number of hours in
the period is supplied as an unsigned short in hour, the number of minutes
supplied as an unsigned short in minute and the number of seconds supplied
as a float in second.

The structure AbsTime is used to represent an absolute point in time. It is
composed of a Date structure (see above) and a Time structure. The Time
structure is considered to represent the time in Military time (i.e. 24 hour
clock).

2.2.1.4 EmailAddress

 typedef string EmailAddress;

This structure serves to hold a definition of a complete email address.
The syntax for this string is of the form user_name “@” host_name, where
user_name is an identifier for a user or account on system host_name .

A-10

host_name is an identifier for the target system. It can be in the form of a
name or IP address.

2.2.2 Vector-like data types

The following data types are used to represent geospatial and geometric
elements.

Note: These data types may be replaced in the future with definitions from the
Open GIS Consortium (OGC), a standards forum in the GIS community. The
OGC data types were not available at the time of development of this
specification. When those data types definitions do become available, they
will be reviewed and considered for inclusion in this document to replace the
data types defined in this section.

2.2.2.1 Coordinate

struct LongCoord {
long x;
long y;
long z;

 };

struct DoubleCoord {
double x;
double y;
double z;

 };

enum CoordinateType
 {

TypeDouble, TypeLong
 };

union Coordinate switch (CoordinateType)
 {

case TypeDouble:
 DoubleCoord d_coord;
case TypeLong:
 LongCoord l_coord;

 };

The Coordinate data type serves as a basis for all composite geospatial
data types in UCOS. The intent of Coordinate is to represent a single three
dimensional point in a coordinate system. The definition of the coordinate

A-11

system being used for a specific Coordinate is defined by its usage or other
structures containing the Coordinate, not the Coordinate structure itself.

A Coordinate can be of one of two forms: TypeLong or TypeDouble.
TypeLong Coordinates are used for coordinate systems which have
dimensions requiring integer values. TypeDouble Coordinates are used for
coordinate systems which have dimensions requiring floating point values.
The values of the three dimensions of the point to be represented are placed in
the x ,y and z elements of the LongCoord or DoubleCoord type as
appropriate. The mapping of coordinate system dimension to x ,y and z
elements is coordinate system dependent.

2.2.2.2 LineString

 typedef sequence < Coordinate > LineString;

The LineString data type is used to represent a piece-wise linear path
through three dimensional space. The path is constructed by connecting the
individual Coordinates with line segments in the order they appear in the
sequence. The order of the Coordinates in the sequence is used only to define
the connections of the Coordinates, it does not necessarily imply a direction
for the line string nor a temporal sequence (trajectory).

2.2.2.3 Rectangle

 struct Rectangle
 {
 Coordinate ul;
 Coordinate lr;
 };

The Rectangle structure is intended to provide a simple definition of an
area on a surface. It is defined by supplying two Coordinates indicating the
opposing corners of the rectangle of interest. By convention, for coordinate
systems describing the surface of the Earth, the ul element will indicate the
Northwest corner and the lr element will indicate the Southeast corner.

2.2.3 Raster-like data types

2.2.3.1 Buffer

enum BufferType
 {
 OCTET_DATA, CHAR_DATA, SHORT_DATA, USHORT_DATA, LONG_DATA,
 ULONG_DATA, FLOAT_DATA, DOUBLE_DATA
 };

A-12

union Buffer
 switch (BufferType)
 {
 case OCTET_DATA: sequence < octet > octet_data;
 case CHAR_DATA: sequence < char > char_data;
 case USHORT_DATA: sequence < unsigned short > ushort_data;
 case SHORT_DATA: sequence < short > short_data;
 case ULONG_DATA: sequence < unsigned long > ulong_data;
 case LONG_DATA: sequence < long > long_data;
 case FLOAT_DATA: sequence < float > float_data;
 case DOUBLE_DATA: sequence < double > double_data;
 default: sequence < octet > other_data;
 };

2.2.3.2 SimpleGSImage

struct SimpleGSImage
 {
 long width;
 long height;
 Buffer pixels;
 };

The SimpleGSImage is intended to provide a basic definition of a simple
grayscale image. This simple image has two attributes width and height
which define the layout of the pixel data contained in Buffer pixels. The
Buffer which hold the pixel data is of length width * height. Each value in the
Buffer indicates the value of an individual pixel, beginning at the upper left
corner of the image and continuing across the top of the image for width
pixels.

2.2.3.3 SimpleCImage

struct SimpleCImage
 {
 long width;
 long height;
 Buffer redPixels
 Buffer greenPixels;
 Buffer bluePixels;
};

The SimpleCImage is intended to provide a basic definition of a simple
color image with three bands. This simple image has two attributes width and
height which define the layout of the pixel data contained in the three Buffers.
The nth color pixel of this image is defined by the triplet composed of the nth
element of each of the three Buffers. Each Buffer is of length width * height .
Each element of the Buffer indicates the value of a color component (red,

A-13

green or blue) of an individual pixel, beginning at the upper left corner of the
image and continuing across the top of the image for width pixels.

2.2.4 State & Status

 enum State
 {
 COMPLETED, IN_PROGRESS, ABORTED, CANCELED, PENDING, OTHER
 };

 struct Status
 {

State completion_state;
string status_message;
NameValueList details;

 };

The Status and State structure are intended to represent the current
condition of a process, request or other system element.

The enumeration State defines 6 (six) identifiers (“states”) for the
condition of a process, request or system element. Each state is also defined as
a TERMINAL or NON-TERMINAL state. A process in a TERMINAL state
will remain in that state until action is taken that causes it to change state. A
NON-TERMINAL state will eventually change to a TERMINAL state without
any further action being taken. The identifiers and the corresponding condition
are defined as follows:

State Description Terminal ?
COMPLETED All requested processing has completed successfully Yes
 IN_PROGRESS Still processing, no error or abnormal conditions yet

encountered
No

 ABORTED Processing has stop due to an error or abnormal
condition

Yes

 CANCELED Processing has been stopped by request Yes
 PENDING Processing has not yet begun or has temporarily been

halted
No

 OTHER A condition other then those described above Yes

The structure Status is used to describe the details of the current
condition of a process, request or system element. The Status structure is
composed of three elements: completion_state a State (see above) indicating
the current condition of the process, request or system element,
status_message , a string containing a human readable message that further
amplifies or clarifies the State and details a NameValueList that contains any

A-14

attributes or other information that describe or refine the current condition of
the process, request or system element being described. The names and values
contained in the NameValueList are defined by the context of use and the type
of process, request or system element being described. They will be defined
by the appropriate profile of the specification using the Status structure.

2.3 UCO interfaces

There are currently no interfaces defined in the UCO specification. In the
future, interfaces that define capabilities common to all or required by many of
the USIGS interface specifications will be standardized and defined in the
UCO specification.

2.4 UCO Exceptions

There are currently no exceptions defined in the UCO specification. In
the future, exceptions common to more then one USIGS interface
specification will be standardized and defined in the UCO specification.

A-15

3. Appendix A: UCO IDL
//***
**
//*
//* The USIGS Common Object Specification
//*
//*
//* Description: Defines fundamental data types and
//* interfaces to be used by other specifications to
support
//* interoperation across independently designed
interfaces.
//*
//*
//*
//* History:
//* Date Author Comment
//* ----- -------- ------------
//* 15 May 97 D. Lutz Initial release for review
//* 2 July 97 D. Lutz Released for TEM review
//* 11 July 97 D. Lutz Changes based on 2 July TEM Comments
//*
//* Notes
//* -------
//* NONE
//*
//*
//***

// The USIGS Common Objects

module UCO
{
// Generic data types

 struct NameValue
 {
 string name;
 any value;
 };

 typedef sequence < NameValue > NameValueList;
 typedef sequence < string > NameList;

 struct FileLocation
 {
 string user_name;
 string password;
 string host_name;

A-16

 string path_name;
 string file_name;
 };

typedef sequence <FileLocation> FileSet;

 struct Date
 {
 unsigned short year;
 unsigned short month;
 unsigned short day;
 };

 struct Time
 {
 unsigned short hour;
 unsigned short minute;
 float second;
 };

 struct AbsTime
 {
 Date date;
 Time time;
 };

 typedef string EmailAddress;

// Basic Geospatial data types

//3D integer coordinate
struct LongCoord {
long x;
long y;
long z;
};

// 3D floating point coordinate
struct DoubleCoord {
double x;
double y;
double z;
};

 enum CoordinateType
 {
 TypeDouble, TypeLong

A-17

 };

 union Coordinate switch (CoordinateType)
 {
 case TypeDouble:
 DoubleCoord d_coord;
 case TypeLong:
 LongCoord l_coord;
 };

 typedef sequence < Coordinate > LineString;

 struct Rectangle
 {
 Coordinate ul;
 Coordinate lr;
 };

// Simple composite geospatial datatypes

enum BufferType
 {
 OCTET_DATA, CHAR_DATA, SHORT_DATA, USHORT_DATA,
LONG_DATA, ULONG_DATA,
 FLOAT_DATA, DOUBLE_DATA
 };

 union Buffer
 switch (BufferType)
 {
 case OCTET_DATA: sequence < octet >
octet_data;
 case CHAR_DATA: sequence < char >
char_data;
 case USHORT_DATA: sequence < unsigned short >
ushort_data;
 case SHORT_DATA: sequence < short >
short_data;
 case ULONG_DATA: sequence < unsigned long >
ulong_data;
 case LONG_DATA: sequence < long >
long_data;
 case FLOAT_DATA: sequence < float >
float_data;
 case DOUBLE_DATA: sequence < double >
double_data;
 default: sequence < octet >
other_data;
 };

A-18

 struct SimpleGSImage
 {
 long width;
 long height;
 Buffer pixels;

};

 struct SimpleCImage
 {
 long width;
 long height;
 Buffer redPixels;
 Buffer greenPixels;
 Buffer bluePixels;
 };

 enum State
 {
 COMPLETED, IN_PROGRESS, ABORTED, CANCELED, PENDING, OTHER
 };

 struct Status
 {

State completion_state;
string status_message;
NameValueList details;

 };

}; // End of module UCO

B-19

4. Appendix B: Reference OMG Standard IDL

CORBA Standard Exceptions

#define ex_body {unsigned long minor; completion_status
completed;}

enum completion_status {COMPLETED_YES, COMPLETED_NO,
COMPLETED_MAYBE};
enum exception_type {NO_EXCEPTION, USER_EXCEPTION,
SYSTEM_EXCEPTION};

exception UNKNOWN ex_body;
exception BAD_PARAM ex_body;
exception NO_MEMORY ex_body;
exception IMP_LIMIT ex_body;
exception COMM_FAILURE ex_body;
exception INV_OBJREF ex_body;
exception NO_PERMISSION ex_body;
exception INTERNAL ex_body;
exception MARSHAL ex_body;
exception INITIALIZE ex_body;
exception NO_IMPLEMENT ex_body;
exception BAD_TYPECODE ex_body;
exception BAD_OPERATION ex_body;
exception NO_RESOURCES ex_body;
exception NO_RESPONSE ex_body;
exception PERSIST_STORE ex_body;
exception BAD_INV_ORDER ex_body;
exception TRANSIENT ex_body;
exception FREE_MEM ex_body;
exception INV_IDENT ex_body;
exception INV_FLAG ex_body;
exception INTF_REPOS ex_body;
exception BAD_CONTEXT ex_body;
exception OBJ_ADAPTER ex_body;
exception DATA_CONVERSION ex_body;
exception OBJECT_NOT_EXIST ex_body;

B-20

5. Acronyms

API Application Program Interface
CIIF Common Imagery Interoperability Facilities
CIIP Common Imagery Interoperability Profile
CIIWG Common Imagery Interoperability Working Group
CORBA Common Object Request Broker Architecture
GIAS Geospatial & Imagery Access Services
IASS Image Access Services Specification
IDL Interface Definition Language
ISO International Standard Organization
NIMA National Imagery and Mapping Agency
OGC Open GIS Consortium
OMG Object Management Group
TBD To Be Determined
TBR To Be Resolved
UCOS USIGS Common Object Specification
UIP USIGS Interoperability Profile
USIGS United States Imagery and Geospatial System

6. Points of Contact

USIGS Architecture Integration Group
Ron Burns, National Imagery and Mapping Agency

Phone: (703) 808-0891
FAX: (703) 808-0531
Email: BurnsR@nima.mil

Joe Wesdock, National Imagery and Mapping Agency
Phone: (301) 227-3110 x428
Email: WesdockJ@nima.mil

Project Lead for MITRE Interface Definition Support
John Polger, National Imagery and Mapping Agency

Phone: (202) 863-3004
FAX: (202) 488-0271
Email: PolgerJ@nima.mil

NIMA Libraries Interface Definition
Charlie Green, Sierra Concepts, Inc.

Phone: (610) 347-0602
FAX: (610) 347-0602
Email: cpg.sci@mindspring.com

UCOS & GIAS Specifications & Support, and RFCs
Dave Lutz, The MITRE Corporation

Phone: (703) 883-7848
FAX: (703) 883-3315
Email: dlutz@mitre.org

USIGS Interoperability Profile (UIP)
Bill Nell, Lockheed Martin Management & Data Systems

Phone: (610) 531-6012
FAX: (703) 962-3698
Email: William.H.Nell@lmco.com

